It wasn’t long until my bug got confirmed. Someone else chimed in that they had also experienced USB issues. In their case it were external drive devices. Definitely a showstopper!
As of this date, there is a beta for Ubuntu 22.04, and my hope is that this version will either include a new enough kernel (5.16 or up), or that Ubuntu developers have manually cherry-picked the commit that fixes the issue. Let’s check with the Ubuntu Kernel Team:
Ubuntu Kernel Team
Oops… based on upstream 5.15… that’s not good. Maybe they cherry-picked upstream commits? I checked https://packages.ubuntu.com/jammy/linux-generic and the kernel is currently at 5.15.0.25.27. The changelog doesn’t mention anything about xhci or usb. I guess I still have to wait a bit longer…
In previous blogposts I wrote about how I found a possible bug in the Linux kernel, or more precisely, in the kernel that Ubuntu derived from the mainline kernel.
Versions 5.xx.yy-zz-generic are installed with apt.
Versions 5.xx.yy-05xxyy-generic are installed with the Ubuntu Mainline Kernel Installer.
Versions 5.xx.yy-ubuntu-5.13.0-zz.zz-nnn-g<commithash> are compiled from source, where <commithash> is the commit of the kernel repository that I compiled.
The kernels in bold are the kernels where something unexpected happens with my USB devices:
Ubuntu kernels 5.13.23 and up – including 5.15 kernels of Ubuntu 22.04 LTS (Jammy Jellyfish).
Ubuntu compiled kernels, starting 387 commits after kernel 5.13.22.
Mainline kernels 5.15.xx.
When Ubuntu finally bases their kernel on mainline 5.16 or higher, then the USB bug will be solved.
Ubuntu mainline kernel packages 5.15.7 and later bump a dependency from libssl1.1 (>= 1.1.0) to libssl3 (>= 3.0.0~~alpha1).
However, package libssl3 is not available for Ubuntu 21.10 Impish Indri. It’s only available for Ubuntu 22.04 Jammy Jellyfish (which is still in beta as of time of writing) and later.
libssl3 further depends on libc6>=2.34 and debconf, but they are available in 21.10 repositories.
Here are a few different ways to resolve the dependency:
Option 1
Use apt pinning to install libssl3 from a Jammy repo, without pulling in everything else from Jammy.
This is more complicated, but it allows the libssl3 package to receive updates automatically. Do all the following as root.
Create an apt config file to specify your system’s current release as the default release for installing packages, instead of simply the highest version number found. We are about to add a Jammy repo to apt, which will contain a lot of packages with higher version numbers, and we want apt to ignore them all.
$ echo 'APT::Default-Release "impish";' \
| sudo tee /etc/apt/apt.conf.d/01ubuntu
Add the Jammy repository to the apt sources. If your system isn’t “impish”, change that below.
$ awk '($1$3$4=="debimpishmain"){$3="jammy" ;print}' /etc/apt/sources.list \
| sudo tee /etc/apt/sources.list.d/jammy.list
Pin libssl3 to the jammy version in apt preferences. This overrides the Default-Release above, just for the libssl3 package.
This only works if there aren’t any additional dependencies, which you would also have to install, with a risk of breaking your system. Here Be Dragons…
Recently I wanted to print some PDF files containing sheet music. The tedious way to do that, would be to open them one by one in Evince and press the print button. Surely there must be a more efficient way to do that?
There are 2 console commands for printing: lp and lpr. One comes from grandpa System V, the other from grandpa BSD, and both are included in CUPS. The nice thing about these commands is that they know how to interpret PostScript and PDF files. So this is going to be easy: just cd into the directory with the PDF files and print them all:
$ lp *.pdf
lp: Error - No default destination.
Oops. A quick Google search of this error message tells me that I don’t have a default printer.
printer HP_OfficeJet_Pro_9010_NETWORK is idle. enabled since za 12 mrt 2022 00:00:28
printer HP_OfficeJet_Pro_9010_USB is idle. enabled since za 12 mrt 2022 00:00:17
no system default destination
I have a HP OfficeJet Pro 9012e printer, which Ubuntu recognizes as a 9010 series. Close enough. It’s connected over network and USB. I’m setting the network connection as default with lpoptions:
I can then use lpq to verify that the default printer is ready:
$ lpq
HP_OfficeJet_Pro_9010_NETWORK is ready
no entries
Printing multiple files from console
I found that if I naively do lp *.pdf, then only the last file will be printed. That’s unexpected, and I can’t be bothered to find out why. So I just use ls and feed that to a while-loop. It’s quick and dirty, and using find+xargs would probably be better if there are “special” characters, but that’s not the case here.
There’s one caveat: when the PDF files are printed one by one, then the first page will be at the bottom of the paper stack, so I need to print them in reverse order.
$ ls --reverse *.pdf | while read f; do lp "$f"; done
With that command I got 17 print jobs in the printer queue, one for each file.
Now that I know how to print from console, I’ll probably do that more often. The man page of lp describes many useful printing options, like printing double sided:
Now that I have a way to compile kernels from source, I want to find the exact commit where my input devices stop working. That means doing a git checkout of a certain commit, build the kernel, install it, reboot, select the new kernel in Grub, and see if my keyboard works. I am quite sure that I need to search between 5.13.0-22 and 5.13.0-23, but that’s still 634 commits!
This is where git bisect comes in. It’s sort of a wizard that guides you to find a bad commit. You tell it on which commit your software was known to work ok, and a commit where it doesn’t. It then picks a commit somewhere in the middle, you build your software and do your tests, and then tell git bisect if the result was good or bad. It will then give you a new commit to inspect, each time narrowing the search.
git bisect
Let’s do this!
$ git bisect start
$ git bisect good Ubuntu-5.13.0-22.22
$ git bisect bad Ubuntu-5.13.0-23.23
Bisecting: 316 revisions left to test after this (roughly 8 steps)
[398351230dab42d654036847a49a5839705abdcb] powerpc/bpf ppc32: Fix BPF_SUB when imm == 0x80000000
$ git describe --long
Ubuntu-5.13.0-22.22-317-g398351230dab
In this first step, I get the 317th commit after 5.13.0-22. Let’s compile that commit:
$ time make clean olddefconfig bindeb-pkg \
--jobs=$(getconf _NPROCESSORS_ONLN) \
LOCALVERSION=-$(git describe --long | tr '[:upper:]' '[:lower:]')
This creates 3 .deb packages in the directory above:
Now I can reboot, select the new kernel in Grub, and test the keyboard. With commit 317, the keyboard worked, so the first bad commit has to be somewhere between commit 317 and 634:
$ git bisect good ; git describe --long
Bisecting: 158 revisions left to test after this (roughly 7 steps)
[79b62d0bba892e8367cb46ca09b623c885852c29] drm/msm/a4xx: fix error handling in a4xx_gpu_init()
Ubuntu-5.13.0-22.22-475-g79b62d0bba89
Now it’s time again for make clean olddefconfig bindeb-pkg, dpkg --install and reboot. Turns out that commit 475 was a “bad” commit (one where the keyboard didn’t work):
$ git bisect bad ; git describe --long
Bisecting: 78 revisions left to test after this (roughly 6 steps)
[c3d35f3acc3a11b726959c7b2c25ab9e46310273] USB: serial: option: add Telit LE910Cx composition 0x1204
Ubuntu-5.13.0-22.22-396-gc3d35f3acc3a
I’m not going to describe all the steps in full detail, by now you should get the gist of it. This was the sequence of steps that git bisect gave me:
$ git bisect bad ; git describe --long
0fc979747dece96c189bc29ef604e61afbddfa2a is the first bad commit
commit 0fc979747dece96c189bc29ef604e61afbddfa2a
Author: Pavankumar Kondeti <pkondeti@codeaurora.org>
Date: Fri Oct 8 12:25:46 2021 +0300
xhci: Fix command ring pointer corruption while aborting a command
BugLink: https://bugs.launchpad.net/bugs/1951880
commit ff0e50d3564f33b7f4b35cadeabd951d66cfc570 upstream.
The command ring pointer is located at [6:63] bits of the command
ring control register (CRCR). All the control bits like command stop,
abort are located at [0:3] bits. While aborting a command, we read the
CRCR and set the abort bit and write to the CRCR. The read will always
give command ring pointer as all zeros. So we essentially write only
the control bits. Since we split the 64 bit write into two 32 bit writes,
there is a possibility of xHC command ring stopped before the upper
dword (all zeros) is written. If that happens, xHC updates the upper
dword of its internal command ring pointer with all zeros. Next time,
when the command ring is restarted, we see xHC memory access failures.
Fix this issue by only writing to the lower dword of CRCR where all
control bits are located.
Cc: stable@vger.kernel.org
Signed-off-by: Pavankumar Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20211008092547.3996295-5-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
drivers/usb/host/xhci-ring.c | 14 ++++++++++----
1 file changed, 10 insertions(+), 4 deletions(-)
Ubuntu-5.13.0-22.22-387-g0fc979747dec
At first sight the commit description is quite cryptic, and the actual code change doesn’t tell me a lot either. But it’s a change in drivers/usb/host/xhci-ring.c, and xhci stands for eXtensible Host Controller Interface, and interface specification for USB host controllers. If it’s an issue with the USB host controller, then it makes sense that if I use 2 keyboards from different brands, neither of them would work. It also suggests that other USB devices, like external hard drives, wouldn’t work either, but that’s a bit harder to test. A keyboard is easy. Just look at NumLock LED, if it doesn’t go on then there’s an issue.
The first link in the commit description is just a long list of patches that were taken from upstream and integrated in the Ubuntu kernel, so that doesn’t help me. The second link is a thread on the kernel.org mailing list, and there it gets interesting.
kernel.org mailing list thread
Some excerpts from the thread:
This patch cause suspend to disk resume usb not work, xhci_hcd 0000:00:14.0: Abort failed to stop command ring: -110.
youling257
Thanks for the report, this is odd. Could you double check that by reverting this patch resume start working again. If this is the case maybe we need to write all 64bits before this xHC hardware reacts to CRCR register changes. Maybe following changes on top of current patch could help:
Mathias Nyman
Every time a developer says “this is odd”, my alarm bells go off. 😀
Further down in the thread there is a proposed update to the change. I’m going to try that patch, but that’s for another blog post.
Kernel ubuntu-5.13.0-22.22-0-g3ab15e228151 is, for all intents and purposes, the same as kernel 5.13.0-22-generic, so I expected it to be a “good” kernel, and it was.
For kernel Ubuntu-5.13.0-23.23 I did the same thing: starting from the git checkout. I skipped copying and editing the config file, because between minor releases I don’t expect there to be much change. I did run make olddefconfig for good measure, though. As expected, the keyboard and mouse didn’t work with the compiled ...-23 kernel.
Next up: using git bisect to find the exact commit where it went wrong. It’s got to be somewhere between ...-22 and ...-23!
As I wrote previously, I’m suspecting a Linux kernel bug somewhere between versions 5.13.0-22 and 5.13.0-23, in the Ubuntu kernels. I wanted to know if the issue only surfaced in Ubuntu-flavored kernels, or also in the upstream (mainline) kernels from kernel.org.
There is an Ubuntu Mainline PPA with all the upstream kernels, but I found it a bit too opaque to use. Fortunately I found the Ubuntu Mainline Kernel Installer (UMKI), a tool for installing the latest Linux kernels on Ubuntu-based distributions.
Ubuntu Mainline Kernel Installer (UMKI)
The UMKI is pretty straightforward. It fetches a list of kernels from the Ubuntu Mainline PPA and a GUI displays available and installed kernels, regardless of how they were installed. It installs the kernel, headers and modules. There is also a CLI client.
With that out of the way, there’s the matter of deciding which kernels to try. The “interesting” Ubuntu kernels are 5.13.0-22 and 5.13.0-23, so the mainline kernels I definitely want to test, are around those versions. That means 5.13.0 and 5.13.1. I also want to try the latest 5.13.x kernel, so that’s 5.13.19, and the most recent stable kernel, 5.16.11 (as of 2022-03-01).
To summarize, I have tested these mainline kernels:
5.13.0
5.13.1
5.13.19
5.16.11
The result (after several reboots)? With all of them, my keyboard and mouse worked without a hitch. That means the issue most likely doesn’t occur in (stable) mainline kernels, only in kernels with additional patches from Ubuntu.
My laptop is a 2011 MacBook Air. I’m not a huge Apple fan, it’s just that at the time it had the most interesting hardware features compared to similar laptops. And it’s quite sturdy, so that’s nice.
Over the years I have experimented with installing Linux in parallel to the OS X operating system, but in the end I settled on installing my favorite Linux tools inside OS X using Homebrew, because having two different operating systems on one laptop was Too Much Effort™. In recent times Apple has decided, in it’s infinite wisdom (no sarcasm at all *cough*), that it will no longer provide operating system upgrades for older hardware. Okay, then. Lately the laptop had become slow as molasses anyway, so I decided to replace OS X entirely with Ubuntu. No more half measures! I chose 20.04 LTS for the laptop because reasons. 🙂
The laptop was really slow…
According to the Ubuntu Community Help Wiki, all hardware should be supported, except Thunderbolt. I don’t use anything Thunderbolt, so that’s OK for me. The installation was pretty straightforward: I just created a bootable USB stick and powered on the Mac with the Option/Alt (⌥) key pressed. Choose EFI Boot in the Startup Manager, and from there on it’s all a typical Ubuntu installation.
Startup Manager
I did not bother with any of the customizations described on the Ubuntu Wiki, because everything worked straight out of the box, and besides, the wiki is terribly outdated anyway.
The end result? I now have a laptop that feels snappy again, and that still gets updates for the operating system and the installed applications. And it’s my familiar Linux. What’s next? I’m thinking about using Ansible to configure the laptop.
To finish, I want to show you my sticker collection on the laptop. There’s still room for a lot more!
sticker collection on my laptop. Photo copyright: me.
Ik heb dus een Logitech Bluetooth Desktop MX5000. Al van in het begin heb ik daar problemen mee gehad in Ubuntu. Ofwel werken muis&toetsenbord, maar kon ik geen foto’s van mijn Nokia 6680 naar de pc sturen, ofwel omgekeerd. Lastig…
Gisteren was er een langverwachte update (3.9-0ubuntu2) van bluetooth in Ubuntu Feisty. Resultaat: muis en gsm werken, maar het toetsenbord niet. Dat is nog altijd lastig, maar het is een interessante wijziging!
Ik heb dan een oud PS/2-toetsenbord vanonder het stof gehaald, daarmee de gebruikelijke mantra ingetypt om verbinding te maken met een bluetooth device: sudo hidd --connect 00:07:61:XX:XX:XX terwijl ik tegelijkertijd op de connect-knopjes drukte op het toetsenbord en de bluetooth dongle. Ik moest wel héél snel zijn en een aantal keer opnieuw proberen, maar… (tromgeroffel) mijn toetsenbord werkt nu!
Ik gebruik al sinds 2005 Ubuntu, maar vandaag heb ik eindelijk ook de moeite genomen om de Ubuntu Code of Conduct te ondertekenen. Waarom? Omdat ik wel al eens wat bijdragen lever aan de mailinglijsten en dat kan daar wel eens een krabbenmand zijn. *kuch* (understatement) Ik probeer naar eer en geweten te handelen in al de Linux- en andere Free Software communities waarbinnen ik actief ben, en door de CoC te ondertekenen, leg ik dat commitment vast.
Het heeft wel wat voeten in de aarde gehad want je moet dan een document ondertekenen met pgp en dat is, om het beleefd te zeggen, niet echt een uitblinker qua gebruiksgemak. Ik vermoed dat ik pgp totaal verkeerd gebruik, maar iedere keer dat ik iets van pgp-keys nodig heb, verwijder ik al mijn vorige keys en maak ik er totaal nieuwe aan. Soit. Het hele proces bestaat uit 3 delen:
Dan de fingerprint copy/pasten in Launchpad. Even later krijg je een encrypted mail van Launchpad. Kopieer de inhoud van de mail naar een tekstfile en doe: gpg -d launchpad.txt Op het einde van te tekst staat een link om de OpenPGP key te bevestigen.